Technor.

Technical Information

Selecting a Ball Screw Slide

First, you must determine...

Travel Distance
Load
Orientation of Load
Cycle Time
Max rpm of Screw
Max Speed
Max Acceleration
Required Torque to Drive Load

With this information, you can start to determine which ball screw slide is suitable for your application.

Loading Capacity and Life Expectancy

Fundamental Principle

The specification of a linear guide is based on the loading capacity of the individual element. The loading capacity is described by:

- the dynamic load data C
- the static load data \mathbf{C}_{0}
- the static moments $\mathbf{M}_{\mathbf{x}}, \mathbf{M}_{\mathbf{y}}, \mathbf{M}_{\mathbf{z}}$

The basis of the dynamic load data, according to DIN standards, is a nominal life expectancy of $100,000 \mathrm{~m}$ travel. For a nominal life expectancy of $50,000 \mathrm{~m}$, the load data is 20% higher than those values supplied in this catalog.

Dynamic Loading Capacity

The fatigue behavior of the materials determines the dynamic loading capacity. The life expectancy is dependent on:

- the load on the linear guide
- the travel speed of the linear guide
- the statistical contingency of the first defect taking place

Nominal Life Expectancy

The nominal life expectancy is achieved, or exceeded 90% of the time before the first indication of fatigue appears.
$\mathbf{L}=\left(\frac{\mathbf{C}}{\mathbf{P}}\right)^{p} \times 1 \times 10^{5} \mathrm{~m}$
$\mathbf{L}_{\mathrm{h}}=\frac{833}{\mathbf{H} \times \mathbf{n}} \times\left(\frac{\mathbf{C}}{\mathbf{p}}\right)^{\mathrm{p}}$
$\mathbf{L}_{\mathrm{h}}=\frac{1666}{\mathbf{V}} \times\left(\frac{\mathbf{C}}{\mathbf{P}}\right)^{\mathrm{p}}$
\mathbf{L} [m] nominal life expectancy in meters
$L_{h}[h] \quad$ nominal life expectancy in operating hours
C [N] dynamic load
$\mathbf{P}[\mathrm{N}] \quad$ dynamic equivalent load
p Life expectancy index:
ball-bearing linear guides: $\mathbf{p}=3$
roller bearing linear guides: $\boldsymbol{p}=10 / 3$

Technical Information

H [m] single stroke length
\mathbf{n} [min] number of complete strokes per minute
\mathbf{v} [m/min] average travel speed

Usable Life

The actual life expectancy achieved by a linear guide is known as usable life. The usable life can deviate from the calculated life expectancy.

These conditions can lead to early defects:

- alignment error between guide rails or guide elements
- insufficient lubrication
- oscillatory motion with very small strokes (rippling)
- vibration during standstill (rippling)

Due to the variation in installations and operating conditions, it is not possible to determine the exact usable life of a linear guide in advance. The safest method to obtain a correct assessment of the usable life is to compare cases with similar installations.

Combined Loading Capacity

When the loading direction of an element does not coincide with one of the loading directions, this is the way the equivalent load is calculated as follows:

$$
\begin{equation*}
\mathbf{P}=\left|\mathbf{F}_{\mathbf{1}}\right|+\left|\mathbf{F}_{\mathbf{2}}\right| \tag{5}
\end{equation*}
$$

for a force \mathbf{F} and a moment \mathbf{M} at the same time, the dynamic equivalent load is:
$\mathbf{P}=|\mathbf{F}|+|\mathbf{M}| \times \frac{\mathbf{C}_{0}}{\mathbf{M}_{\mathbf{0}}}$
$\mathbf{P}[\mathrm{N}] \quad$ dynamic equivalent load
$\mathbf{F}[\mathrm{N}] \quad$ applied force $=\sqrt{\mathbf{F}_{1}{ }^{2}+\mathbf{F}_{2}{ }^{2}}$
$\mathrm{F}_{1}[\mathrm{~N}] \quad$ vertical components, see sketch (4)
$\mathrm{F}_{2}[\mathrm{~N}] \quad$ horizontal components, see sketch (4)
$\mathrm{C}_{0}[\mathrm{~N}] \quad$ static load in the direction of the applied force

M [N•m] applied moment
$\mathbf{M}_{0}[\mathrm{~N} \cdot \mathrm{~m}]$ static moment in the direction of the applied moment

According to DIN standards, the dynamic equivalent load should not exceed the value $\mathbf{P}=0.5 \times \mathbf{C}$.

Load and Moment Data for Techno Ball Screw Driven Slides

Model	Standard-Duty	Heavy-Duty 2	Narrow Profile 1	Narrow Profile 2
\# of carriages	4 carriages	4 carriages	1 carriage	1 or 2 carriages
Carriage type	Series 1 Carriage 1	Bearing Carriage 4	Series 1 Carriage 1	Bearing Carriage 4
F1 stat $[\mathrm{N}]$	430	800	430	800
F1 dyn $[\mathrm{N}]$	400	500	400	500
F2 stat $[\mathrm{N}]$	430	800	430	800
F2 dyn $[\mathrm{N}]$	400	500	400	500
$\mathbf{M x ~ s t a t ~}[\mathrm{~N} \cdot \mathrm{~m}]$	7.3	12.6	7.3	12.6
$\mathbf{M y ~ s t a t ~}[\mathrm{~N} \cdot \mathrm{~m}]$	3.7	22	3.7	22
$\mathbf{M z}$ stat $[\mathrm{N} \cdot \mathrm{m}]$	3.7	12.6	3.7	12.6
$\mathbf{M x d y n}[\mathrm{~N} \cdot \mathrm{~m}]$	7.3	7.4	7.3	7.4
$\mathbf{M y}$ dyn $[\mathrm{N} \cdot \mathrm{m}]$	3.7	13	3.7	13
$\mathbf{M z}$ dyn $[\mathrm{N} \cdot \mathrm{m}]$	3.7	7.4	3.7	7.4

NOTE: See formulas in load bearing mechanisms' section of technical section.
Load and moment data are per carriage.

Technical Information

Drive Dimensioning and Calculation of Drive Torque

The nominal drive torque consists mainly of 'load torque', 'acceleration torque' and 'no-load torque'.

Definitions

$\mathbf{M a}_{\text {A }}[\mathrm{N} \cdot \mathrm{m}]$	required drive torque
$\mathbf{M}_{\text {Last }}[\mathrm{N} \cdot \mathrm{m}]$ resulting load torque	
$\mathbf{M}_{\text {NLT }}[\mathrm{N} \cdot \mathrm{m}]$ no load torque*	
$\mathbf{M}_{\text {rot }}[\mathrm{N} \cdot \mathrm{m}$	rotary acceleration torque
$M_{\text {trans }}$ [N .	acceleration torque
$F_{\mathrm{x}}[\mathrm{N}]$	feed force
$F_{a}[\mathrm{~N}]$	acceleration force
$g\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	gravity $=9.81$
$\mathbf{V}_{\text {max }}[\mathrm{m} / \mathrm{s}]$	max feedrate

$F_{E}[N] \quad$ external force
p [mm] screw lead
$\mathbf{m}[\mathrm{kg}]$ total mass to be moved
a $\left[\mathrm{m} / \mathrm{s}^{2}\right.$] acceleration
\mathbf{P} [kW] driving power
$\mathbf{n}_{\text {max }}[1 / \mathrm{min}]$ max. speed
$\mu \quad$ friction factor $=0.05$
$\mathbf{M}_{\mathbf{E}}[\mathrm{N} \cdot \mathrm{m}]$ external load torque
$\mathrm{J}_{\text {syn }}\left[\mathrm{Kgm}^{2} / \mathrm{m}\right]=0.0000325$

$$
\mathrm{m}=\mathrm{mass} \text { of load }+ \text { mass of carriage(s) }
$$

*relevant data are given on the following data sheets for the Ball Screw Slides

Acceleration Force F_{a}

$$
F_{a}=\mathbf{m} \times \mathbf{a}
$$

with vertical loads, the acceleration to gravity g must be added to the mass acceleration ($\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$)

Feed Force $\mathrm{F}_{\mathrm{x}} \quad$ External Torque M_{E}

$$
F_{x}=m \times g \times \mu
$$

Resulting Torque $\mathbf{M}_{\text {Last }}$

$$
M_{E}=\frac{F_{E} \times d_{0}}{2 \times 1000}
$$

$$
M_{\text {Last }}=\frac{F_{x} \times p}{2} \frac{p}{\pi \times 1000}
$$

Driving Power \mathbf{P}

$$
\mathbf{P}=\frac{\mathbf{M}_{A} \times \mathbf{n}_{\max } \times 2 \pi}{60 \times 1000}
$$

Acceleration Torque $\mathbf{M}_{\text {trans }}$

$$
\mathbf{M}_{\text {trans }}=\frac{\mathbf{F}_{\mathbf{a}} \times \mathbf{p}}{2 \pi \times 1000} \quad \mathbf{M}_{\text {rot }}=\frac{\mathbf{J}_{\text {syn }} \times \mathbf{L} \times \mathbf{n}_{\text {max }} \times 9 \times 2 \pi}{\mathbf{V}_{\text {max }} \times 60 \times 1000}
$$

Rotary Acceleration Torque $\mathbf{M}_{\text {rot }}$

Drive Torque Formula:

$$
M_{A}=M_{\text {Last }}+M_{\text {trans }}+M_{\text {rot }}+M_{\text {NLT }}+M_{E}
$$

Selecting a Ball Screw Slide

No-Load Torque Charts

Standard-Duty Slides

No-Load Speed (rpm)	No-Load Torque (N Screw Pitch		
	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{2 0}$
	0.18	0.2	0.21
$\mathbf{1 5 0 0}$	0.22	0.24	0.25
$\mathbf{3 0 0 0}$	0.26	0.29	0.3

Heavy-Duty 2 Slides

No-Load Speed (rpm)	No-Load Torque (N Screw Pitch			
	$\mathbf{2 . 5}$	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{2 0}$
$\mathbf{5 0 0}$	0.18	0.2	0.21	0.22
$\mathbf{1 5 0 0}$	0.24	0.24	0.25	0.26
$\mathbf{3 0 0 0}$	0.26	0.29	0.3	0.32

Narrow Profile 2 Slides

No-Load Speed (rpm)	No-Load Torque (N • m) Screw Pitch			
	$\mathbf{2 . 5}$	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{2 0}$
$\mathbf{5 0 0}$	0.15	0.16	0.17	0.18
$\mathbf{1 5 0 0}$	0.19	0.19	0.2	0.21
$\mathbf{3 0 0 0}$	0.23	0.24	0.25	0.26

