Techno
 Inc.

Technical Information

3) Basic Engineering Information

The following engineering information will help solve technical problems frequently encountered in designing and selecting power transmission components and systems.

Torque:

$$
\begin{equation*}
T=F R \tag{1}
\end{equation*}
$$

where:
$T=$ Torque (lb•ft)
$F=$ Force (lb)
$R=$ Radius, or distance that the force is from the pivotal point (ft)

Linear to rotary motion:

$$
\begin{equation*}
N=\frac{V}{0.262 D} \tag{2}
\end{equation*}
$$

where:
$N=$ Speed of shaft rotation (rpm)
$V=$ Velocity of material (fpm)
$D=$ Diameter of pulley or sprocket (in)

Horsepower:

- Rotating objects:

$$
\begin{equation*}
P=\frac{T N}{5250} \tag{3}
\end{equation*}
$$

where:
$P=$ Power (hp)
$T=$ Torque (lb•ft)
$N=$ Shaft speed (rpm)

- Objects in linear motion:

$$
\begin{equation*}
P=\frac{F V}{33000} \tag{4}
\end{equation*}
$$

where:
$P=$ Power (hp)
$F=$ Force (lb)
$V=$ Velocity (fpm)

Accelerating torque and force:

- Of rotating objects:

$$
\begin{equation*}
T=\frac{\left(W K^{2}\right) \Delta N}{308 t} \tag{5}
\end{equation*}
$$

where:
$T=$ Torque required (lb•ft)
$W K^{2}=$ Total inertia of load to be accelerated ($\mathrm{lb} \cdot \mathrm{ft}^{2}$)
See formulas 7, 8, 9 and 10
$\Delta N=$ Change in speed (rpm)
$t \quad=$ Time to accelerate load (sec)

- Objects in linear motion:

$$
\begin{equation*}
F=\frac{W \Delta V}{1933 t} \tag{6}
\end{equation*}
$$

where:
$F \quad=$ Force required (lb)
$W=$ Weight (lb)
$\Delta N=$ Change in velocity (fpm)
$t \quad=$ Time to accelerate load (sec)

Moment of Inertia

- Solid cylinder rotating about its own axis

$$
\begin{equation*}
W K^{2}=\frac{1}{2} W R^{2} \tag{7}
\end{equation*}
$$

where:
$W K^{2}=$ Moment of inertia $\left(\mathrm{lb} \cdot \mathrm{ft}^{2}\right)$
$W=$ Weight of object (lb)
$R=$ Radius of cylinder (ft)

Technical Information

- Hollow cylinder rotating about its own axis:

$$
\begin{equation*}
W K^{2}=\frac{1}{2} W\left(R_{1}^{2}+R_{2}^{2}\right) \tag{8}
\end{equation*}
$$

where:
$W K^{2}=$ Moment of inertia $\left(\mathrm{lb} \cdot \mathrm{ft}^{2}\right)$
$W=$ Weight of object (lb)
$R_{1}=$ Outside radius (ft)
$R_{2}=$ Inside radius (ft)

- Material in linear motion with a continuous fixed relation to a rotational speed, such as a conveyor system:

$$
\begin{equation*}
W K_{L}^{2}=W\left(\frac{V}{2 \pi N}\right)^{2} \tag{9}
\end{equation*}
$$

where:
$W K_{L}^{2}=$ Linear inertia ($\left(\mathrm{lb} \cdot \mathrm{ft}^{2}\right)$
$W=$ Weight of material (lb)
$V=$ Linear velocity (fpm)
$N=$ Rotational speed of shaft (rpm)

- Reflected inertia of a load through a speed reduction means - gear, chain, or belt system:

$$
\begin{equation*}
W K_{R}^{2}=\frac{W K_{L}^{2}}{R_{r}^{2}} \tag{10}
\end{equation*}
$$

where:
$W K_{R}{ }^{2}=$ Reflected inertia ($\mathrm{lb} \cdot \mathrm{ft}^{2}$)
$W K_{L}{ }^{2}=$ Load inertia $\left(\mathrm{lb} \cdot \mathrm{ft}^{2}\right)$
$R_{r}=$ Reduction ratio

Duty cycle calculation

The RMS (root mean squared) value of a load is one of the quantities often used to size PT components.

$$
\begin{equation*}
L_{\text {RMS }}=\sqrt{\frac{L_{1}^{2} t_{1}+L_{2}^{2} t_{2}+\ldots+L_{n}^{2} t_{n}}{t_{1}+t_{2}+\ldots t_{n}}} \tag{11}
\end{equation*}
$$

where:
$L_{\text {RMS }}=$ RMS value of the load which can be in any unit - hp, amp, etc.
$L_{1}=$ Load during time period 1
$L_{2}=$ Load during time period 2 , etc.
$t_{1}=$ Duration of time period 1
$t_{2}=$ Duration of time period 2, etc.

Modulus of elasticity

$$
\begin{equation*}
E=\frac{P L}{A \Delta d} \tag{12}
\end{equation*}
$$

where:
$E=$ Modulus of elasticity $\left(\mathrm{lb} / \mathrm{in}^{2}\right)$
$P=$ Axial load (lb)
$L=$ Length of object (in)
$A=$ Area of object (in ${ }^{2}$)
$\Delta d=$ Increase in length resulting from axial load (in)

